A. Ayala, J. Castaño-Yepes, M. Loewe, and E. Muñoz, “**Fermion mass and width in QED in a magnetic field**”, Physical Review D 104, 016006 (2021)

We revisit the calculation of the fermion self-energy in QED in the presence of a magnetic field. We show that, after carrying out the renormalization procedure and identifying the most general perturbative tensor structure for the modified fermion {mass operator} in the large field limit, the mass develops an imaginary part. This happens when account is made of the sub-leading contributions associated to Landau levels other than the lowest one. The imaginary part is associated to a spectral density describing the spread of the mass function in momentum. The center of the distribution corresponds to the magnetic-field modified mass. The width becomes small as the field intensity increases in such a way that for asymptotically large values of the field, when the separation between Landau levels becomes also large, the mass function describes a stable particle occupying only the lowest Landau level. For large but finite values of the magnetic field, the spectral density represents a finite probability for the fermion to occupy Landau levels other than the LLL.